Cognitive Development Laboratory

Studying the Structure and Function of the Developing Brain

Foundational Domains

Our framework is a synthesis of principles drawn from:

Control Theory (e.g., Åström, Murray; Kalman; Powers): Provides the formal models for system stability, feedback loops, and control gain (k).

Cognitive Psychology (e.g., Heitz; Ratcliff; Posner; Sweller): Defines the core processes of attention, decision-making (DDM), and cognitive load (τ).

Neuroscience (e.g., Botvinick, Carter; Corbetta & Shulman): Anchors control parameters in neural architectures (e.g., Executive Control Network, Salience Network).

Psychometrics (e.g., Cattell-Horn-Carroll; Miyake; Kovacs & Conway): Supplies the formalisms for modeling latent structures (ϕ,Λ) from observed scores (y).

Applied Practice (e.g., Hasbrouck–Tindal; Fuchs): Informs the translation of model parameters (ρ,v) into evidence-based, practical interventions.

Developmental Theory (e.g., Bronfenbrenner–Morris): Provides the ecological framework for understanding how environmental scaffolds shape developmental trajectories.

Bibliography

1. Control Theory and Dynamical Systems

Åström, K. J., & Murray, R. M. (2010). Feedback systems: An introduction for scientists and engineers. Princeton University Press.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45.

Powers, W. T. (1973). Behavior: The control of perception. Aldine.

Strogatz, S. H. (2015). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering (2nd ed.). CRC Press.

Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. MIT Press.

van Geert, P. (1994). Dynamic systems of development: Change between complexity and chaos. Harvester Wheatsheaf.

2. Cognitive Psychology and Decision Dynamics

Heitz, R. P. (2014). The speed–accuracy tradeoff: History, physiology, methodology, and behavior. Frontiers in Neuroscience, 8, 150.
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922.
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.

3. Neuroscience and Neurocognitive Control

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.
Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 367–379.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.
Friston, K. J. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.
Friston, K. J., Da Costa, L., Parr, T., Stephan, K. E., & Frith, C. D. (2021). What is the expected free energy? Nature Reviews Neuroscience, 22(4), 251–264.
Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240.

4. Psychometrics and Latent Structure

Cattell, R. B. (1943). The description of personality: Basic traits resolved into clusters. Journal of Abnormal and Social Psychology, 38(4), 476–506.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press.
Horn, J. L. (1965). Fluid and crystallized intelligence: A factor analytic study of the structure among primary mental abilities. Psychometrika, 30(2), 179–185.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.
Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27(3), 151–177.
Bollen, K. A. (1989). Structural equations with latent variables. Wiley.

5. Mathematical & Computational Foundations

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
Lee, J. M. (2018). Introduction to Riemannian manifolds (2nd ed.). Springer.
Amari, S. (2016). Information geometry and its applications. Springer.
Petersen, P. (2006). Riemannian geometry (2nd ed.). Springer.
Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. MIT Press.
van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov), 2579–2605.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183–233.

6. Developmental and Applied Frameworks

Bronfenbrenner, U., & Morris, P. A. (2006). The bioecological model of human development. In W. Damon & R. M. Lerner (Eds.), Handbook of child psychology (6th ed., Vol. 1, pp. 793–828). Wiley.
Baltes, P. B., Reese, H. W., & Nesselroade, J. R. (1977). Life-span developmental psychology: Introduction to research methods. Brooks/Cole.
Hasbrouck, J., & Tindal, G. (2017). Oral reading fluency norms: A valuable assessment tool for reading teachers. The Reading Teacher, 70(5), 647–656.
Fuchs, L. S., & Fuchs, D. (2017). Progress monitoring as essential practice within response to intervention. Learning Disabilities Research & Practice, 32(1), 8–17.
McArdle, J. J., & Nesselroade, J. R. (2014). Longitudinal data analysis using structural equation models. American Psychological Association.

Other Citations

Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation and active inference. Network Neuroscience, 1(4), 381–414.

Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. Basic Books.

Smith, L. B., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7(8), 343–348.

Balduzzi, D., & Tononi, G. (2009). Qualia: The geometry of integrated information. PLoS Computational Biology, 5(8), e1000462.